jueves, 6 de julio de 2017

2.5.Relaciones

Relaciones en un conjunto.
En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio , con un segundo conjunto, llamado Recorrido o Rango , de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango. 

EJEMPLOS:

Dados dos conjuntos A y B una relación definida de A en B es un conjunto de parejas ordenadas ( par ordenado ) que hacen verdadera una proposición; dicho de otro modo, una relación es cualquier subconjunto del producto cartesiano A x B
Ejemplo 1.
Si A = {2, 3}  y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.
Solución
El producto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:
A x B = {(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}
Y cada uno de los siguientes conjuntos corresponde a relaciones definidas de A en B:
R1 =  {(2, 1), (3, 1)}
R2 =  {(2, 4), (2, 5), (3, 4), (3, 5)}
R3 =  {(2, 4), (3, 5)}
La relación R1 se puede definir como el conjunto de pares cuyo segundo elemento es 1, esto es, R1 =  {( x , y ) / y = 1}.
La relación R2 está formada por los pares cuyo primer componente es menor que el segundo componente, R2 = {( x , y ) / x < y }
Y la relación R3 está conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R3 =  {( x , y ) / y = x + 2}
Así, se puede continuar enumerando relaciones definidas a partir de A x B. Como se puede ver, la regla que define la relación se puede escribir mediante ecuaciones o desigualdades que relacionan los valores de x e y . Estas reglas son un medio conveniente para ordenar en pares los elementos de los dos conjuntos.
Ejemplo 2.
Dados los conjuntos C = {1, –3} y D = {2, 3, 6}, encontrar todos los pares ordenados ( x , y ) que satisfagan la relación
R =  {( x , y ) / x + y = 3}
Solución
El producto cartesiano de C x D está formado por los siguientes pares ordenados
C x D = {(1, 2), (1, 3), (1, 6),  (–3, 2), (–3, 3),  (–3, 6)}
Las parejas ordenadas que satisfacen que la suma de sus componentes sea igual a 3 son:
R =  {(1, 2), (–3, 6)}
Toda relación queda definida si se conoce el conjunto de partida, el conjunto de llegada y la regla mediante la cual se asocian los elementos. En el ejemplo anterior, el conjunto de partida corresponde al conjunto C , el conjunto de llegada es el conjunto D y la expresión x + y = 3 es la regla que asocia los elementos de los dos conjuntos.
Ejemplo 3
Sean: A = {1, 3, 5}, B = {2, 4, 6, 8}.
R1 = {(3, 2), (1, 8), (5, 4)} es una relación de A en B.
R2 = {(3, 8)} es una relación de A en B.
R3 = {(x, y) / x Î A Ù y Î B Ù x > y} = {(3, 2),(5, 2),(5, 4)}.
R4 = {(x, y) / x Î A Ù y Î B Ù x + y £ 7}
     = {(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (5, 2)}.
R5 = {(1, 5), (3, 3)} es una relación de A en A.
R6 = {(2, 3), (6, 1)} es una relación de B en A.
R7 = {(3, 6), (1, 4),(5 ,8), (2, 1)} no es una relación de A en B y tampoco de B en A.
R8 = {(x, y) / x Î A , y Î B, x - y = 0} = 0. 
Ejemplo 4
Si A = {1, 2, 3}, B = {a, b}, C =  
entonces: 
A × B = {(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)} 
B × A = {(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)} 
A × C =
B × C =

Ejemplo 5
Dados los conjuntos A {1, 3, 5}  y B {0, 2  } 
entonces:
A × B ={(1, 0); (1, 2); (3, 0); (3, 2); (5, 0); (5, 2) }
se tiene:
R1 = {(1,0), (1, 2), (3, 2)} 
R2 = {(1, 2); (3, 0); (5, 0); (5, 2)
R3 = {(1, 0),(5, 2)}

R4 = 

No hay comentarios.:

Publicar un comentario